
MA 3046
Matrix Analysis

Introduction to the Laboratory Segment

Practical computation represents an essential, mandatory portion of this course. Ma-
trix analysis and computation are not sterile, theoretical subjects. On the contrary, they
lie at the core of virtually all modern engineering and design activities. Moreover, they
reflect a discipline where the theory almost never lurks too far in the background - seriously
erroneous results commonly occur whenever matrix numerical methods are employed in
situations where they theoretically are “outside of their envelope.”

These are intended to be laboratories in the classic sense that they often require you to
carry (numerical) “experiments.” These experiments, most of which are contained in short,
usually already-written programs, have been specifically designed to reinforce or to expand
on theoretical points which have been made in class. For the most part, you should work
these laboratories like any other experimental laboratory, i.e. review the theory before
hand, then conduct the experiment (i.e. run the programs), record the results, analyze
the data, compare the observed behavior to theoretical predictions, and draw conclusions
about the validity of the theory from the (numerical) behavior observed.

Some of these laboratories will be graded. Some will be just for your own learning.
Some will serve as the starting point for some subsequent, graded project. You will be
told at start of each laboratory class whether or not that particular one will be graded
and, if so, when you will need to submit your report. Even when a particular laboratory
is not graded, however, we strongly suggest that you not treat it too superficially. There
is a very good chance that at least some of the concepts covered in that laboratory will
reappear either in later graded projects or on in-class examinations.

Our policy in the course with respect to preparation of graded laboratory assignments
is fairly liberal, in the sense that we generally encourage your freely discussing interesting
or perplexing aspects of these laboratories with other students or with the instructor.
Our primary expectation is that, when you finally submit any project for grading, the
final written product is your own writing, that you acknowledge any extensive or critical
assistance that you may have been given, and that you are reasonably able to explain or
expand upon any statements you have made or conclusions you have reached.

Lastly, we strongly recommend you approach these laboratories with an open, and
even slightly skeptical attitude. Expect and be watchful for occasional surprises! Numer-
ical matrix analysis can involve some very subtle effects, which may be evident only in
hindsight. That’s one aspect that make it such an interesting field of study.

1

[This Page Intentionally Left Blank]

2

MA3232 - Numerical Analysis

The Workstation Environment

General Comments

These laboratories are designed to be run on the Windows 2000/NT workstations
located in various laboratories located around campus. These workstations utilize the usual
Microsoft Windows environment for communication (i.e. entering commands, editing files,
etc.) and standard IEEE arithmetic for computation. Most of the programs and exercises
in these laboratories can also be successfully (and often better) run on properly-configured
Unix workstations, such as those found in some high-end engineering laboratories that
still exist at various locations around the campus. However, you should be aware that
non-Windows machines may produce slightly different results, depending on the particular
machine and version of the relevant software installed there.

The prerequisites for this course include courses that should have been taught, at
least in part, in one of the campus computer laboratories, and familiarity with the Matlab
programming language. Therefore, these laboratories presume that you have already used
and are somewhat familiar with NT, or similar Windows workstations, and that you also
have minimal Matlab skills. (Although not a stated course prerequisite, some exposure to
the Maple symbolic computation language may also be of benefit.) If you wish to briefly
review Matlab, we suggest the following reference:

• MATLAB Primer, by Kermit Sigmon, Fourth Edition

Windows Skills and Commands

In general, besides familiarity with Matlab, you will need certain Windows skills in
order to complete the laboratories. The most important of these skills are the abilities to:

• Open and close certain command windows
• Navigate between different (sub)directories
• Copy and move files
• Create, edit and save files

All of the above functions can, in general, be accomplished by clicking on the appropriate
icon on the Windows Desktop, or by choosing properly from within some drop-down menu
list. For example, an Internet browser window can be opened by mouse double-clicking on
the appropriate icon (either Internet Explorer or Netscape) on the desktop. Alternatively,
one may single click on the Start button on the left of the Windows Taskbar (at the
bottom of the screen), then on Programs, then finally on the Internet Explorer icon
within that list.

3

Unfortunately, the current Windows systems on campus are neither completely uni-
form across campus nor completely reliable, and the Matlab version found in the worksta-
tions in Glasgow may contain a somewhat different configuration than are available with
any of the versions of Matlab found in the engineering laboratories. Therefore, we strongly
recommend that you create, on your own personal desktop (strictly speaking as part of
your Roving Profile), dedicated icons for the both the Glasgow LRC and the engineering
departments versions of Matlab. You can do this by

(1) Locating the program icon for the desired program. (It should be either directly
on the desktop or in a Desktop Folder called Lab Specific Applications

(2) Right mouse clicking on the desired program icon.

(3) Selecting Copy.

(4) Moving to any blank spot on the desktop, right-clicking the mouse, and selecting
Paste.

(5) A copy of the icon should appear on the desktop, and will now follow you wherever
you go on campus.

The programs which comprise the numerical “experiments” in these laboratories will
generally be located on the NPS web, under either the Mathematics Department Web Site:

http://www.math.nps.navy.mil/∼art/ma3046
or the Intranet URL:

http://intra.nps.navy.mil/∼ma3046
and you should be able to be access, view and download them using any standard web
browser on any on-campus system. (Because of security dictates, the Intranet site is
not reachable from off-campus.) We strongly recommend that you bookmark these sites,
and download from them into a subdirectory you have specifically created to hold only
programs associated with this course. You can create subdirectories by double clicking on
the My Computer icon, navigating into the parent directory where you want the new
subdirectory located, then right-clicking on any blank space within the directory window;
and finally selecting New and then Folder from the resulting drop down menu.

Lastly, the programs on these sites are updated as (usually minor) changes are made
to them. Therefore, they may not exactly match the listings in this manual. However, rest
assured you will be told when any significant changes are made to them!

4

MA 3046 - Matrix Analysis
Laboratory Number 1

Basic Features and Properties of MATLAB

The stated prerequisites for this course include familiarity with MATLAB in the NPS
workstation environment, a familiarity which you should have gained in any number of
other courses. (Actually, anyone with prior experience in any programming language
such as BASIC, FORTRAN, C, etc., can, with a little effort, probably learn the basics
of MATLAB on their own while taking this course.) In this laboratory, we shall briefly
review some of the basics of MATLAB, the look at some aspects of MATLAB you may
not have seen previously, and, along with these, give you an opportunity to become a bit
more familiar with the specific workstations that we’ll be using.

MATLAB (short for Matrix Laboratory) is a package designed for both practical com-
putations and theoretical investigations of numerical methods and computation. As its
name probably indicates, its original forte was matrix computations, however the current
capabilities of MATLAB are far greater. MATLAB versions exist for mainframes (e.g. the
IBM at NPS), Unix workstations, and PC’s.

MATLAB is actually based on a complex suite of C programs that implement certain
“primitive” subroutine operations, plus an interface driver routine which converts input,
“English-like” and mathematical expressions into the correct subroutine calls. Thus, a
MATLAB user wishing to compute the product of two matrices may simply type a state-
ment like:

c = a∗b
and MATLAB will then (completely transparently to the user), interpret this as requesting
a matrix multiplication, and issue a command, similar to, for example, the FORTRAN
command:

call matmul(c,a,b,nrowa,ncola,nrowb,ncolb)

to actually multiply the correct matrices and store the resulting product appropriately.

On most PC systems, MATLAB is started by double-clicking on the appropriate icon.
(On other, e.g. Unix systems, it may also be started by issuing the command matlab
from within any command window.) After a “brief” delay, the MATLAB welcome and
command prompt (“>>”) will appear. From here on, the user is free to create virtually
any allowable algebraic, functional, or matrix operation or calculation by simply typing in
the appropriate command(s). For example, you can obtain some appreciation of the power
of MATLAB by issuing the demo command after the prompt appears.

Matrices, e.g.

a =

∙
1 3 1
−1 2 4

¸
5

can be created in MATLAB either by simply entering the elements, one at a time, e.g.:

a(1, 1) = 1 ,

a(1, 2) = 3 ,

etc. or by entering, on a single line,

a = [1 , 3 , 1 , ; -1 , 2 , 4]

where [indicates the start of the matrix, ; the end of a row,] the end of the matrix,
and the commas are optional. (Data or commands that are too long to fit on a single
MATLAB command line may be continued onto the next line(s) by simply typing ... ,
then hitting return, and just continuing to enter the data or command on the new line.)

MATLAB also creates and accesses vectors and submatrices using the : symbol to
denote a range of values. For example, the statement

x = [0 : 10]

produces the same vector as would

x = [0 1 2 3 4 5 6 7 8 9 10]

while the statement

asub = a(1 : 2 , 2 : 3)

will produce the (sub)matrix consisting of the first and second rows and second and third
columns of a, e.g. if we were to use this command with the matrix created above, we
would obtain:

asub =

∙
3 1
2 4

¸
(Note that since in this case we actually included all of the rows of a, we could also have
just entered the command:

asub = a(: , 2 : 3)
The range feature allows us to operate with and exploit, wherever possible, the simplicity
and power of block matrices. Block matrices are simply matrices, each of whose elements
is itself a matrix. (While there are some minimal compatibility requirements that must
be satisfied when performing algebraic operations using block matrices, in general one
operates algebraically with them just as if they were ”normal” matrices of numbers.)

Information about specific MATLAB commands may obtained by either selecting
Help from the drop-down menu at the top of the window, or with the help command.
Simply typing help, followed by the name of a specific command, e.g.

help chop

will generally give sufficient information about syntax that one can then use that command.
Because the help command uses pure text, it is markedly faster than the menu if you know
the name of the function you want more information about. If you have only a general

6

idea about the category of problem you are working on, and are searching for possible
programs to solve it, the menu is probably preferable.

Actually, very little of MATLAB is written in C. Most MATLAB commands and
functions are really just text files of sequences of other MATLAB commands. These
are commonly called m-files, and are generally clearly identified because their file name
ends in .m, for example chop.m. (That most MATLAB commands and functions are
written in the English-like MATLAB syntax greatly simplifies the inspection and analysis
of MATLAB algorithms.) Users can also create their own commands in MATLAB, simply
by using the built-in MATLAB text editor to create an appropriate (ascii) m-file of other
commands. (You should never try to create MATLAB files with Microsoft Word, or any
other general word processor!)

MATLAB actually allows two general types of user-written m-files, scripts and func-
tions. The major difference between these is that functions, such as chop.m, are used with
a set of input argument variables, and produce a specific output value (or set of values),
e.g.

z = exp(-1.) produces z = 0.3679 , and
while scripts allow a much wider variety of tasks to be executed. (Both types, however,
still have the .m file name ending.) More information about scripts and functions can be
obtained by giving the commands:

help function and help script

% This script demonstrates both the use of MATLAB scripts,
% and one of the effects of using floating-point arithmetic.
%
a = 4/3
b = a - 1
c = b + b + b
d = 1 - c

Figure 1.1 - Listing of Program matrevpr1.m

The program (m-file) matrevpr1.m, which is shown in Figure 1.1, represents one
simple example of a MATLAB script. This script simply “automates” four sequential
MATLAB commands and produces a rather interesting result!! (To fully appreciate this
result, you should first work through these calculations by hand.)

By contrast, the m-file ge basic.m, which is shown in Figure 1.2, is an example of a
function m-file. This particular function implements “normal” Gaussian Elimination on a

7

function [uwork] = ge basic(aaug)
%
[m,n] = size(aaug)
uwork = aaug ;
%
working row = 1 ;
working col = working row ;
%
while (working row < m)*(working col < n)
i = working row ;
j = working col ;
if (uwork(i,j) == 0) ; %%%% check for zero pivot ;
disp(’ ’);disp(’ ’);
disp(’***** Error - zero in pivot position - current array is’);
uwork
error(’exiting. . . ’);

end
%

for ii = i+1:m
lcoef = uwork(ii,j)/uwork(i,j) ;
uwork(ii,j) = 0 ;
for jj = (j+1):n
uwork(ii,jj) = uwork(ii,jj) - lcoef*uwork(i,jj) ;

end
end
working row = working row + 1;
working col = working row ;
end

%

Figure 1.2 - Partial Listing of Program ge basic.m

matrix (normally an augmented matrix), with no row interchanges, in the case when no
zeros appear on the diagonal. (Note that, because of space considerations, the listing in
the figure is a somewhat abbreviated version of the full program, which not only performs
the computations, but outputs all of the intermediate results as well.) Thism-file is clearly
identified as a function by the first line, i.e.

function [uwork] = ge basic(aaug)

which contains the keyword function, and goes on to indicate that, in this case, the input

8

to this function is an array, and the output another array. (Specifically, the output is the
upper triangular matrix that results from Gaussian elimination, without row interchanges,
applied to aaug.) In addition, MATLAB also provides a number of fairly simple, yet
powerful commands for producing high-quality standard, semi-logarithmic and logarithmic
two and three-dimensional graphs. We shall investigate some of these capabilities in this
laboratory.

As discussed in class, the Standard Inner Product in Complex Euclidean space (C
u n)

can be defined, computationally, as:

uH v = u1v1 + u2v2 + · · ·+ unvn
where uH ≡ uT is commonly called the Hermitian (or adjoint) of u, although some texts
uses the slightly more nondescript symbol u∗. (Similarly, the Hermitian of a complex-
valued matrix is defined by

UH ≡ U
T ⇐⇒ uHij = uji ,

or U∗.) Note that the MATLAB operator 0 produces the Hermitian, and so

uH v in mathematical symbols ←→ u0 ∗ v in MATLAB

(Note, however, that the Hermitian and the transpose are identical only when all the
entries of the matrix or vector are purely real. Also note that, unfortunately, many texts
define the Standard Inner Product in complex spaces in such a way as to results that are
conjugates with those produced by our definition! This can produce no end of confusion,
although no important theoretical results are affected. Lastly, also note that other, non-
standard inner products can also be defined in either C

u n or IRn. However, again, we shall
not persue those here.)

Having a computational definition of the inner product available in C
u n also permits

us to generalize concepts such as magnitude (length) and direction (angle) to higher-
dimensional spaces, where ordinary geometrical constructs fail. For example, we define
the “length” of a vector in C

u n to be:

ku k ≡
q
|u1|2 + |u2|2 + · · ·+ |un|2 =

√
uH u

We can also extend the concept of mutually perpendicular vectors from IR2 and IR3 into C
u n

by calling a set of non-zero vectors B =
©
b(1), b(2), . . . , b(k)

ª
orthogonal if:

b(i)
T
b(j) = 0 , i 6= j (1)

Using orthogonal basis vectors to represent other vectors proves distinctly advantageous
when we need to find coordinates, etc. Specifically, if the b(i) form an orthogonal basis,
and if a general vector x is expressed in terms of this basis, i.e. if

x = B [x]B (2)

9

where B = [b(1)
... b(2)

... · · · ... b(n)], then the coordinates of x in terms of the orthogonal
basis B are given by:

[x]B =
¡
BHB

¢−1
BHx ⇐⇒ ([x]B)i =

b(i)
H
x

b(i)
H
b(i)

=
b(i)

H
x

kb(i) k2
(3)

(These formulas are a direct consequence of the observation that the columns of B become
the rows of BH . Therefore, if the columns of B are orthogonal vectors, then, it also
follows directly from (1) that BHB is a diagonal matrix, whose diagonal entries are just
the squares of the lengths of the corresponding columns of B.) Lastly, note we shall also
show later that computing coordinates using (3) requires approximately significantly less
computational effort than solving (2) via Gaussian elimination. So orthogonal bases appear
to offer significant practical computational advantages.

Even greater computational simplification results when the basis vectors are or-
thonormal, i.e. when the elements ofQ =

©
q(1), q(2), . . . , q(k)

ª
are not only orthogonal,

but also satisfy kq(i) k = 1 , i = 1, 2, . . . , k. In this case,

QH Q = I (4)

and therefore we immediately have that [x]Q = Q
H x.

Complex-valued matrices that satisfy (4) are called unitary, while real matrices with
the same property (i.e. QTQ = I are, somewhat confusingly, called orthogonal (vice
orthonormal). Clearly, in either case, such matrices must have columns which are or-
thonormal vectors with respect to the corresponding Standard Inner Product.

Unitary matrices have several important properties. The foremost follows from the
fact that if Q is square, then

QTQ = I =⇒ QT = Q−1

and therefore inverting an orthogonal matrix is “free.” In addition, orthogonal matrices
can be shown to be length-preserving, in that

kQx k = kx k

One almost-immediate consequence of this result is that

kx k = k [x]Q k =
q
α21 + α22 + · · ·+ α2n

regardless of what orthonormal basis is used. (This result is basically the same as the
so-called Parseval’s lemma, a common result in Fourier analysis.) The also are angle-
preserving in the sense that the angle between x and y will be identical to the angle
between Qx and Qy.

10

Actually, one slight notational correction is in order here. There are actually several,
essentially equivalent ways, of measuring “length” in C

u n, and we commonly call any such
measure a norm. Thus far in this discussion, we have actually been using the so-called
Euclidean norm, which we should probably more accurately denote as

kx k2 ≡
√
xH x

The Euclidean norm is not the same as, although certainly a member of the same “family”
as other norms we have referred to, i.e. the so-called infinity norm:

kx k∞ ≡ max
i
|xi|

and the one norm:

kx k1 ≡
nX
i=1

|xi| = |x1|+ |x2|+ · · ·+ |xn|

All three of these can be calculated in MATLAB, using variants of the norm() command.
Having said this, we will continue to use kx k to stand for either a generic norm or precisely
one of the above norms, whenever which is the case should be clear from the context of
the discussion.

Lastly, all vector norms induce corresponding matrix norms, according the relation-
ship

kA k = max
x

kAx k
kx k = max

kx k=1
kAx k

(Note that among other aspects, this relationship will allow us to fairly “cheaply” obtain
at least order of magnitude estimates of kA k.)

Lastly, we would observe that one primary area of concern in practical numerical
linear algebra springs from the fact that most “real-world” problems involve matrices that
tend to be very large, e.g. n ∼ 105 or even larger. With matrices of this size, simple-
looking algorithms from introductory linear algebra courses, e.g. Gaussian elimination,
which theoretically solves

A x = b

exactly in a finite number of steps, can require a truly daunting number of computations,
even on a “fast machine.” A reasonable understanding of the approximate number of
computations required for any particular algorithm, and the associated execution time
therefore becomes curcial in determining for what size matrices the algorithm will actually
be useful!)

In numerical analysis, we commonly use the term computational complexity of an algo-
rithm as a synonymn for a count of the number of floating-point multiplications, divisions,
additions and subtractions, or so-called floating-point operations (flops) required by that
algorithm. As we shall later see in class, hand-counting the number of flops required for

11

data = [] ;
%
for NMATRIX = [100, 250, 500, 750, 1000, 1250, 1500] ;
a = randn(NMATRIX) ; % generate random matrix
b = randn(NMATRIX) ; % generate another
nitern = fix(3000/NMATRIX) + 1 ; %determine iterations
tic % set stopwatch
for nit = 1:nitern
b*a ; % compute

end
data = [data ; NMATRIX, toc/nitern] ; % record results
pause(5)

end
%
loglog(data(:,1),data(:,2),’*’)

Figure 1.3 - Partial Listing of Program time mult.m

a given algorithm generally involves fairly straightforward, albeit often highly laborious
analysis. Editions of MATLAB prior to Version 6 greatly simplified such analyses by
providing a built-in function, called flops, which would count the actual number of flops
during the execution of any operation or program. Regrettably, starting with Version 6,
this capability was sacrificed, partly in exchange for markedly faster execution times, and
partly because, as we shall also later see, execution times on modern computing platforms
depend strongly not only on the computational complexity, but also on numerous aspects
of both the hardware architecture and the software.

While no longer counting flops, MATLAB and Windows do provide tools that support
at least rudimentary analysis of algorithm efficiency. The most relevant MATLAB one are
the tic and toc commands. The first of these, in effect, starts an internal “stopwatch.”
From that point on, until that stopwatch is restarted by a subsequent call to tic, each call
to toc reads out the elapsed time. In many instances, will provide sufficient information
to allow us to draw meaningfully compare (relative) algorithm efficiencies. However, there
are several drawbacks to using tic and toc:

(i) The minimum time measured is on the order of 0.01 seconds - a glacial period
by many computer standards. Therefore, we often have to average times over
numerous repetations of an algorithm.

(ii) Individual timings often show significant random fluctuations, due to the effects
of other tasks the computer might be running at the same time, network loads,
etc. Credible results again require averaging the results of multiple runs.

12

Figure 1.3 shows an example using tic and toc to investigate computational com-
plexity. The code determines and records in an array the time required to compute the
product of two square matrices, i.e.

BA

for random matrices of sizes from between 100× 100 to 1500× 1500. Note we use a vari-
able number of iterations to ensure we calculate representative times for small(er) matrices,
and call tic, effectively resetting the “stopwatch,” only immediately before the actual com-
putational loop, so that we measure only the cost of the multiplications. Then, immediately
after each iteration loop we use a call to toc to record the average time for a single cal-
culation. (The pause(5) command inserts a five second pause after each different matrix
size. This pause, which happens after the toc command, does not affect the timing, but
will be useful later.) Finally, note we choose to display our results using a log-log scale
plot. We have a very compelling reason for this choice. Specifically, in any case where
behavior is proportional to some power, i.e. where

y = k xα =⇒ ln(y) = ln(k) + α ln(x)

Therefore, on a log-log plot, this behavior will display as a straight line whose slope is α.

Finally, we additional insights into the efficiency of algorithms are available through
the use of the Windows Task Manager. (The Task Manager can be launched by right-
clicking your mouse on any vacant portion of the Windows Taskbar, then selecting Task
Manager from the resulting pop-up menu.) The Task Manager actually contains three
subwindows, Applications, Processes, and Performance. In this course, we shall use the
Performance subwindow, a sample screen display from which is shown in Figure 1.4. Note
that Task Manager shows two running graphs - one for current CPU utilization, the other
for total current memory utilization. Both of these graphs are updated about once a
second. In addition, this screen also display numerical values for other memory-related
variables. Note, at this particular time, the CPU was running at only about two percent
of capacity (i.e. essentially idle), and about 156K of memory was tied up by the various
running processes. (So, obviously, were this measured in the middle of the execution of an
algorithm, we would be observing and extremely inefficient process!) In this laboratory we
shall observe Task Manager in conjuction with the time mult.m program.

We would close by noting that, while MATLAB provides powerful capabilites for the-
oretical and computational numerical analysis, one drawback of MATLAB is that, by and
large, it can only perform numeric computation, i.e. every MATLAB command causes a
number of floating point computations to be made and the resulting number(s) displayed.
Another area of computation that is beginning to come into its own is symbolic compu-
tation, which involves the manipulation of algebraic expressions, and not just numbers.
The difference between these two types of computation is that, for example, a numeric
computation package will only be able to tell you thatZ 1

0

xe−xdx = 0.26424...

13

Figure 1.4 - The Windows Task Manager

while a symbolic computation program will also tell you thatZ 1

0

xe−xdx = 1− 2e−1 .

As you may have already seen in your calculus (or other) courses, symbolic computation
can greatly speed certain analyses, by allowing us to skip over lengthy, time-consuming
but mechanical manipulations, and concentrate on analyzing the results of those manipu-
lations instead. Therefore, although we shall not use it explicitly in this course, we would
be remiss if we did not at least mention, in this initial laboratory, the symbolic computa-
tion language supported at NPS, a package called MAPLE. MAPLE provides numerous
algebraic manipulation capabilities, including some symbolic matrix manipulation ones,
as well as excellent graphics and some numerical computation and evaluation. As noted
above, however, MAPLE’s forte is symbolic manipulation, and, in general, MATLAB (or
even FORTRAN or C) should be preferred for pure “number crunching.”

14

Name:

MA 3046 - Matrix Analysis
Laboratory Number 1

Basic Features and Properties of MATLAB

1. Login to your workstation and start MATLAB.

2. Use the help command to determine the proper use and meaning of the command or
statements named inv and eye. Then create the matrix

a =

∙
1 3
−1 2

¸
and give the commands:

a. inv(a)

b. inv(a)*a

c. eye(2) - inv(a)*a

Does these result seem reasonable? What, if anything, can you infer about the working
precision of MATLAB from calculation c.?

15

3. Use the help command to look at the randn command. Then generate a random 6×3
matrix

a =

Do the results appear to agree with the description provided by help?

4. Give the command

a(:)

and record the first ten entries:

What do the results appear to say about how MATLAB stores matrices?

16

5. Using the randn command, generate a random column vector (x) with three elements.

x =

Then, using the random matrix generated in problem 3, give the commands

a ∗x
and

x(1) ∗a(:,1) + x(2) ∗a(:,2) + x(3) ∗a(:,3)

Does your result confirm that any matrix vector product is simply a linear combination of
the columns of the matrix?

a ∗ x =

17

6. Use MATLAB’s range capability to partition the matrix generated in problem 3 into
a 1× 2 block format, i.e.

[A11 A12]

where A11 has two columns, and A12 has one column. Correspondingly partition the
column vector x from problem 5 and then verify computationally that

Ax ≡ [A11 A12]

∙
x1
x2

¸
= [A11x1 +A12x2]

Result:

a ∗ x =

18

7. Give the command help which and study the response. Then give the following
commands, and record the responses:

a. which inv Answer —

b. which sin Answer —

a. which asec Answer —

a. which chop Answer —

8. Give the command help chop and examine the output. Next, give, in sequence,
the commands

chop(27.321592 , 5)

chop(27.321592 , 4)

chop(27.321592 , 3)

Are the answers what you expected?

9. Give the command help script and examine the output. Next, using a web
browser pointed to the Laboratories link off

http://www.math.nps.navy.mil/∼art/ma3046 ,
copy the MATLAB script matrevpr1.m to your disk. Then, open a texteditor window
(we recommend the built-in MATLAB editor) and examine this script. What do you
expect the result will be?

19

10. Now run the script by entering the command matrevpr1 in the MATLAB command
window, or, if you’re in the built-in MATLAB editor by simply hitting the F5 key. How well
does the result support your earlier conclusion about the working precision of MATLAB?

(Note that this script, like all MATLAB scripts, does not normally show you, on the screen,
the commands it is executing as it runs. If you want to see these, you have to give the
command echo on before running the script. To stop further display of script commands,
enter echo off.

11. Now, from the command prompt, give each of the commands in matrevpr1.m indi-
vidually. Is the result what you expected??

12. Again using your web browser, copy the MATLAB script ge basic.m to your disk,
open a texteditor window, and examine this script.

20

13. Using MATLAB, created the augmented matrix aaug for the system studied on
pages 5-9 of the text:

2x1 + x2 + x3 = 1
6x1 + 2x2 + x3 = −1
−2x1 + 2x2 + x3 = 7

Then, from the MATLAB command window, give the command

uwork = ge basic(aaug)
Observe the steps in the elimination and compare them to the results you expect if you
work the problem by hand. Also record the final result:

uwork =

Are the results what you expected?

14. Create a vector x that divides the interval 0 ≤ x ≤ 10 into values evenly spaced 0.05
apart by giving the command

x = 0 : 0.05 : 10

(Note this shows another variant of the range specification capability.) Then give the
command

y = 4*x.∧3
What is this doing? (Note that the period here is vital.)

21

15. Now give the commands

plot(x , y) and loglog(x , y)

This will give you some idea of the power and simplicity of MATLAB’s graphics.

16. Next create the matrix:

b =

∙
2i (2 + i)
1 (1− i)

¸
and then give the command:

b0 =

Briefly describe how this does or not agree with what you expected?

17. Create the matrix

B =

1 1 1
1 −1 −1
1 1 −1
1 −1 1

and verify that the columns of B are orthogonal, but not orthonormal, vectors.

22

18. Normalize (convert to length one) each of the columns of the matrix created in part 17,
and call this matrix

Q =

19. For the matrix Q created in part 18, verify that

QH Q = I but QQH 6= I

and therefore Q 6= Q−1. Why is this not a contradiction?

23

20. Add the column
1
1
−1
−1

to the matrix B created in part 17,

B =

and then normalize each column of that matrix

Q =

21. For the new matrix Q created in part 20, verify now that both

QH Q = I and QQH = I

Why should this now be the case?

24

22. Generate a random 4× 1 vector

x =

23. Give the MATLAB help command to review the slash and norm functions.

24. For the vector x created in part 22 above and the matrix Q computed in part 20, also
compute

aone = QH x =

and

atwo = Q\x =

Why is this result either what you did, or did not expect?

25

25. For the vector x created in part 22 above and the matrix Q from part 20, also give
the MATLAB commands

norm(x)

norm(Q ∗ x)

Why is the result either what you did, or did not expect?

26. Generate a random 5× 3 matrix

a =

and verify that its columns are not orthogonal.

26

27. Using the MATLAB help function, study the structure and use of the rank()
command. Then give the command

rank(a) Answer —

28. Next, create the matrix

b =

 1 3 2 −1
−2 −1 3 1
1 2 1 −2

then, using the matrix a created in part 26 above, compute

ahat = a ∗ b =

and finally give the MATLAB command

rank(ahat) Answer —

Why is the result either what you did, or did not expect?

27

29. Copy to your local directory the files time mult.m. Then, open the MATLAB texte-
ditor and briefly study it. Be sure before continuing that you’re convinced it reasonably
accurately calculates only the time(s) required to compute b∗a. Once you’re convinced it
correctly does this, run it, observe the resulting graph and also print out the data array:

NMATRIX time

Why does the graph here appear to be almost a straight line?

30. On the graph as produced in part 29, draw (by hand), the straight line which “best”
fits the data. Then, based on the axes for that graph, determine the slope of this line.

Answer —

Briefly explain why your answer here either is or is not reasonable?

28

31. Using the fact that when both a and b are n× n, computing b ∗ a requires approxi-
mately 2n3 flops, and based on your results from part 29 above, determine the effective
computational speed of your PC:

Answer — Mflops/sec

(where 1Mflop = one million floating point operations.) Compare this result to you ma-
chine’s advertised CPU speed.

32. Finally, start the Windows Task Manager, and select the “Performance” window.
Then rerun program time mult.m as above, this time observing the performance display.
Note specifically how the CPU utilization drops during the pause(5) commands, and how
the memory used increases as the size of the matrices increases.

29

